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Ring solitons on vortices
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Interaction of a ring dark or antidark soliton~RDS and RADS, respectively! with a vortex is considered in
the defocusing nonlinear Schro¨dinger equation with cubic~for RDS! or saturable~for RADS! nonlinearities.
By means of direct simulations, it is found that the interaction gives rise to either an almost isotropic or a
spiral-like pattern. A transition between them occurs at a critical value of the RDS or RADS amplitude, the
spiral pattern appearing if the amplitude exceeds the critical value. An initial ring soliton created on top of the
vortex splits into a pair of rings moving inward and outward. In the subcritical case, the inbound ring reverses
its polarity, bouncing from the vortex core, without conspicuous effect on the core. In the transcritical case, the
bounced ring soliton suffers a spiral deformation, while the vortex changes its position and structure and also
loses its axial symmetry. Through a variational-type approach to the system’s Hamiltonian, we additionally find
that the vortex-RDS and vortex-RADS interactions are, respectively, attractive and repulsive. Simulations with
the vortex placed eccentrically with respect to the RDS or RADS reveal the generation of strongly localized
multispot dark and/or antidark coherent structures. The occurrence of spiral-like patterns in many numerical
experiments prompted an attempt to generate a spiral dark soliton, but the latter is found to suffer a core
instability that converts it into a rotating dipole emitting waves in the outward direction.
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I. INTRODUCTION

Ring dark solitons~RDS’s! were introduced by Kivsha
and Yang in Ref.@1#. Such solutions to the cubic defocusin
nonlinear Schro¨dinger ~NLS! equation in the
(211)-dimensional case have attract interest because,
vided that the ring’s radius is small enough, they are
subject to the transverse instability characteristic of str
~rectilinear! dark solitons. In the work@1#, as well as in a
subsequent one@2#, it was shown how multiscale expansion
can be used to derive an asymptotic equation for these s
circular dips on top of a continuous-wave~cw! background.
It has thus been demonstrated that, for Kerr and non-K
nonlinearities, small-amplitude RDS’s are governed by a
lindrical Korteweg–de Vries~CKdV! equation, which was
earlier known in applications to fluids and plasmas~see, e.g.,
Ref. @3#!. In Ref.@2#, it was also concluded that ringantidark
solitons~RADS’s!, i.e., humps on top of the cw backgroun
rather than dips, can exist too, but only for non-Kerr~e.g.,
saturable! nonlinearities.

Solitary waves of the RDS type may find practical app
cations in the framework of the ‘‘light-guided-by-light’’ con
cept, due to their ability to induce built-of-light waveguide
in which multipleweak signal beams may be guided para
@4#. This possibility has initiated a number of experimen
aimed at creating RDS’s, using computer-generated h
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grams and other methods@5–8#. The results of these exper
ments were found to agree with analytical and numeri
predictions@9#.

Another class of fundamentally important excitations su
ported by NLS-type equations in (211) dimensions are vor-
tices, namely, topologically charged circular waves@10#. Vor-
tices can be generated by means of appropriate comp
generated phase masks, so as to create topological p
dislocations@11,15#. The most promising application tha
vortices may find in photonics is also their use as contr
lable ~moveable! effective waveguides for weak signa
beams in a bulk medium@12#. Since both RDS’s and
RADS’s, as well as vortex solitons, have become subject
interest in experimental studies, it may be natural to cons
interactions between them, i.e., the dynamics of a ring s
ton located on top of a vortex, which is the subject of t
present work. This may be regarded as a generalizatio
recent analytical and experimental studies of the interac
between stripe and vortex solitons@16#.

It is relevant to mention that dynamics of ring-shap
solitons that may collapse, then bounce from the center,
lapse again, and thus perform quasiperiodic pulsations in
radial direction attracted considerable attention some t
ago, chiefly in the context of the two-dimensional sin
Gordon model; see, e.g., Refs.@13,14#. Unfortunately, there
is virtually no real physical medium to observe numero
©2001 The American Physical Society11-1
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effects predicted in these works, as, for instance, tw
dimensional Josephson junctions cannot be uniformly dri
by an external bias current. An optical field with an embe
ded vortex offers a unique example of a physical syst
where various experiments with annular solitons may be p
formed~although the sine-Gordon equation does not apply
this case!.

However, the study of interactions of RDS’s and/
RADS’s with the vortex and between themselves is m
relevant in the context of the above-mentioned potentia
important application of the vortices as effective guides
weak optical signals. Indeed, launching a signal into the v
tex ~parallel to its axis! may naturally produce various pe
turbations that will generate one or more ring solitons, an
is then necessary to know if the vortex itself will rema
really stable in the case when the amplitudes of the per
bations are finite~but, of course, not very large!. We demon-
strate below that this problem is quite nontrivial: despite
complete stability of the vortex against infinitesimal pertu
bations, the interaction of ring-shaped soliton~s!, which are
generated by a finite perturbation, with the vortex may g
rise to a conspicuous shift of the vortex center, and break
circular symmetry, provided that the soliton’s amplitude e
ceeds a threshold value. As well as the possibility of th
generally speaking, detrimental but nevertheless impor
aspect of the dynamics of ring solitons positioned on a v
tex, another interesting issue may be using them as hig
order signal modes propagating in the waveguide induced
the vortex in the bulk medium. Thus, the problem of t
most straightforward interest is the interaction of a RDS
RADS with the vortex core.

The interaction between a RDS or RADS and a vortex
considered in detail in the following section by means
direct simulations of the appropriate NLS model. In the ca
when the ring soliton’s amplitude is not too small, the sim
lations frequently demonstrate that the soliton gives rise
spiral patterns, which suggests the question of whether a
ral generalization of the vortex may exist. This issue is c
sidered in Sec. III, a result being that, in the self-defocus
Kerr medium, a spiral-vortex configuration is subject to
strong instability which transforms its core into a rotati
dipole emitting small-amplitude waves in the outward dire
tion. In Sec. IV we summarize the conclusions obtained
this work.

II. INTERACTIONS BETWEEN A RING DARK
OR ANTIDARK SOLITON AND A VORTEX

A. The model

To study the interaction of a RDS with a vortex, we us
as a benchmark system, the (211)-dimensional defocusing
NLS equation, which describes, for instance, the spatial e
lution of a monochromatic transverse electromagnetic w
in a nonlinear self-defocusing medium@16#. The standard
form of the NLS equation with the cubic~Kerr! nonlinearity
is

iuz52~1/2!Du1uuu2u, ~1!
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whereD[]x
21]y

2 is the transverse diffraction operator, an
the subscriptz stands for the derivative along the propagati
direction. We also aim to consider equations with a mo
general~non-Kerr! nonlinearity of the form

iuz52~1/2!Du1 f ~ uuu2!u, ~2!

where f (I ) is a positive-definite, strictly increasing mono
tonic function of its argument.

In accordance with the possibility suggested by the res
of Ref. @2#, an initial condition generating a ring solito
should be taken as a combination of the cw backgroundu0
and a CKdV ring solitary wave@17#, which is

a1~j,r !52
3ek

p S f 08

2uu0u D
2/3S r 0

r D 2/3

sech2f, ~3!

f~j,r ![
1

2
A3kS r 0

r D 1/3

3H ~2C0!22/3j2
3

2
e3/2kr0F S r

r 0
D 1/3

21G J ,

wherek is an arbitrary positive parameter of the ring solito
family, e.0 is a formal small parameter of the reductiv
multiscale expansion,r 5Ax21y2, r 0 is the RDS radius,j
[e1/2(r 2r 0), C0[ f 08uu0u2, and

p53 f 081uu0u2f 09 , ~4!

FIG. 1. Polarity reversal for a RDS bouncing from the center
the vortex. A cut of the fieldr[uu(x,y)u along the liney50 is
shown@the vortex is centered at (x50,y50)#. The solid and dash-
dotted lines show the field just before the fall of the RDS onto
vortex center, and right after its bounce from the center. The p
tion of the crest of the RDS just before and right after it collid
with the vortex is marked by3.
1-2
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FIG. 2. The evolution of a
RDS on top of the vortex in the
casee,ecr

dark ~in this case,e50.1
andecr

dark50.29). Contour plots of
the absolute value of the field ar
shown forz50, z53, z58, and
z59. It can be seen that the cylin
drical symmetry of the pattern is
not conspicuously broken, and n
significant perturbation of the vor
tex core is observed.
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the prime standing for the derivative off with respect to its
argument. The subscript 0 implies that the derivative
evaluated at the value ofuuu2 equal to the intensityuu0u2

[I 0 of the cw background; hereafter, we use the normali
tion I 051.

According to Eq.~3!, the excitation is dark ifp.0, and
antidark in the opposite case. In the case of the cubic n
linearity, f (I )5I , hence Eq.~4! yields p53, and the ring
soliton is always dark@2#. In contrast, a saturable nonlinea
ity, such as

f ~ I !5
I

~11I /I s!
3

~5!

with a saturation intensityI s , may support either dark o
antidark solitons. It is easy to find that, with regard to t
fact that the intensity of the cw background is normalized
be 1, it is modulationally stable ifI s>2. RADS’s and RDS’s
exist, respectively, in the cases 2<I s,3 andI s.3.

The vortex with the topological charge 1 can be crea
by an initial field configuration

u~r ,u!5b1~r !exp~ iu![tanh~AI 0r !exp~ iu!, ~6!

wherer andu are the polar coordinates in the plane (x,y).
Running direct simulations of Eqs.~1! and~2! ~by means of
the fourth-order Runge-Kutta scheme@18# for integration in
time along with a finite difference discretization in spac!
with free boundary conditions, we have checked that the
tial conditions~6! readily give rise to a stable vortex, afte
some relaxation related to emission of waves in the outw
radial direction. The spatial discretization step used in
06661
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simulations was typicallyDxP@0.4,0.5#, while the runs were
also performed with half the step to ensure accuracy of
results obtained. No phase instabilities were observed in
ther case. Typical time steps of the integrator wereDt
'0.01.

To study the interactions of radial solitons with the vorte
we have performed systematic simulations in which the
tial conditions were taken as a superposition of the rad
soliton, as given by Eq.~3!, and the vortex, as given by Eq
~6!. Results of the simulations are summarized below.

B. A radial dark soliton on the vortex

An initial radial perturbation corresponding to the da
waveform ~3! splits into two RDS’s, ingoing and outgoin
ones. Similarly, an initial antidark perturbation of the sam
type splits into two separating RADS’s. Of these, the
bound ring is of major interest, as it may strongly intera
with the vortex. Next, it can be discerned in the figur
shown below that, due to the slope of the vortex-field ba
ground on which the RDS or RADS is placed, the shape
the appearing ring solitons does not amount to a simple
or hump in the radial direction, as in the previously studi
case of a uniform background. Instead, the RDS appear
have a major dip accompanied by a smaller hump, and v
versa for the RADS. In fact, the RDS and RADS differ in th
amplitudes of the dips and humps in their transverse r
structures.

To perform systematic simulations, we vary the amplitu
of the radial-soliton component~3! in the initial conditions,
fixing k51, and taking different values ofe. The simulations
reveal that there are two different types of the behavior,
pending on the size ofe. If e is smaller than some critica
value edark

(crit) , which, in the NLS equation with the self
1-3
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FIG. 3. The interaction be-
tween a RDS and vortex at a mod
erate transcritical value of the
RDS amplitude, withe50.4. The
top panel shows the configuratio
shortly after the initialization, at
z51, when the inbound and out
bound RDS’s have just separate
and the vortex core is not yet af
fected by the RDS. The bottom
left panel shows a configuration
developed considerably later, atz
59, after the bounce of the in
bound RDS from the vortex core
has already occurred. The vorte
shown in the bottom right panel is
displaced, asymmetrically dis
torted, and it has energy slightly
larger than that of its unperturbe
counterpart, as described in th
text.
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defocusing cubic nonlinearity considered here, was foun
be '0.29, the amplitude of the asymmetric~containing both
dip and hump! inbound RDS is small, and its interaction wit
the vortex produces an almost isotropic pattern. In particu
after bouncing from the center of the vortex, the dip a
hump parts of the RDS exchange polarities, while the vor
is not conspicuously affected. An example of such a pola
reversal is shown in Fig. 1, where comparing horizontal c
of the absolute value of the field for the pre- and postco
sion snapshots reveals the switch of the dip and hump.
interaction of the RDS with the vortex in this case is ad
tionally demonstrated in the sequence of snapshots in F
for e50.1.

In the transcritical casee.edark
(crit ), the simulations dem-

onstrate that the shrinking inbound RDS breaks the cylin
cal symmetry of the vortex through the onset of a sp
instability. In particular, at moderate values ofe, as in the
case shown in Fig. 3 fore50.4, the dip and hump parts o
the RDS are spiraling toward the vortex center, and after
interaction they eventually separate from it. At higher valu
of e, as in the case shown in Fig. 4 fore50.6, they stay
attached to the center in a spiral configuration.

An important observation is that, in the present casee
.edark

(crit)), the size and structure of the vortex can be affec
by the bounce of the RDS from its center. In particular, o
can observe already from Fig. 3 that, even for moderate t
scritical values of the amplitude, the vortex core gets m
compressed, and its profile becomes steeper. Calculating
field energy in a box containing the vortex as

Eb5E
b
F1

2
u¹uu21

1

2
~ uuu221!2G

~where the subscriptb has been used to denote calculation
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the integral over the box!, we have concluded that the inte
action results in a mild increase of the energy~see Fig. 5!.
The energy increase becomes more substantial at largee,
which is explained by a contribution of the above-mention
spiral fragments of the RDS stuck at the vortex core.

Another important feature that can be seen in Fig. 3 is t
the center of the vortex is located at different positions
fore and after the interaction~cf. the top right and bottom
right panels of the figure!, i.e., the interaction with the RDS
displacesthe center of the vortex. Additionally, it is seen th
the rotational symmetry of the core is broken by the inter
tion. It is obvious that these effects, implying a lack of r
bustness of the vortices against finite disturbances, des
their well-known stability against infinitesimal perturbation
are quite important in identifying relevant parametric regio
in which the vortex may be used as a conduit for~relatively!
weak optical signals, as was proposed in Ref.@12#.

An issue of obvious interest is whether the interacti
between a RDS and the vortex core is effectively attract
or repulsive. To this end, we used the following~variational!
approach. An ansatz assuming a superposition of the vo
with a RDS, the RDS radiusr 0 being treated as a free pa
rameter, was inserted into the expression for the syste
Hamiltonian:

H5E
0

`E
0

2p

rdrduF1

2
u¹uu21

1

2
~ uuu221!2G . ~7!

The resulting dependence of the potential vsr 0, obtained by
numerical computation of the integral~7!, is shown in Fig. 6.
It is clearly seen that the interaction between the vortex c
and the RDS is attractive.

We also investigated a case when the vortex was initia
placed not at the center of the configuration, but rather
1-4
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FIG. 4. The interaction of a
RDS with the vortex, which gen-
erates spiral patterns at larger va
ues of the RDS amplitude. In this
case,e50.6, and the panels per
tain to z51, z57, z514, andz
521. The spiral approach of the
fragmented inbound RDS towar
the vortex core can be observed.
is clearly seen that the spiral arm
remain attached to the vortex core
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centrically, with respect to the RDS. In particular, we plac
the vortex at different positions with respect to the RD
following a clock rule: if the initial RDS is thought of as a
clock frame, the vortex was placed, sequentially, at positi
marked as 12:00, 1:30, 3:00, and so on. In these cases
development of spiral patterns is, naturally, faster than in
cases with the vortex originally placed in the center of
RDS.

It is worth mentioning that effects produced by the ecc
tricity of a ring soliton were studied in detail in the abov
mentioned two-dimensional sine-Gordon equation@14#. In
that case, the result is quite different: spiral patterns do
appear; instead, the ring’s eccentricity develops periodic
cillations while the soliton~quasi! periodically bounces from
the center, so that the ring is sometimes compressed a
they axis and elongated along thex axis, and sometimes vic
versa.

C. A radial antidark soliton on the vortex

Interaction of the RADS with the vortex in the saturab
model ~2!,~5! resembles, in many aspects, the interaction
the RDS considered above. In particular, in this case to
critical valueeantidark

(crit) '0.25 was found, below which the in
teraction picture remains almost isotropic, with polarity r
versal of the bouncing ring soliton and no significant chan
to the vortex. Fore.eantidark

(crit) , a spiral pattern is observed an
the interaction phenomenology is considerably more com
cated, affecting also the position, structure, and size of
vortex. Examples of these two different types of the inter
tion between the RADS and the vortex are shown in Figs
and 8.

However, a difference from the case of the RDS is that
the present case, very complex interaction patterns occ
the vortex is initially placed eccentrically with respect to t
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RADS. An example is demonstrated in Fig. 9 for the case
which the vortex is originally placed at the position 4:30
per the clock notation introduced above, ande50.4. In par-
ticular, it can be observed that, as a result of the developm

FIG. 5. The evolution of the net energyE inside a box contain-
ing the vortex~normalized to the initial energyE0 in the same box!
in the casee50.4. The evolution ofE(z) can be explained as fol
lows: Initially, the core emits waves, readjusting itself to an ex
vortex shape, and hence its energy decreases. Subsequentl
approaching inbound RDS brings more energy, but then the in
action with it, resulting in a shift of the vortex, causes a tempor
decrease of the energy. Eventually, the spiral arms detach and
former inbound RDS moves away from the box after the bou
from the vortex core, leaving the vortex~at z'28) with an almost
constant energy~it is slowly varying due to additional emission o
waves!, which is slightly larger than the energy that the vortex h
just before the impact of the inbound RDS~at z'6).
1-5
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of a spiral pattern in the shrinking inbound RADS, the an
dark portion of the RADS gets fragmented into very loc
ized coherent structures, and the vortex is no longer pre
in the final configuration, having transferred its vorticity
the spiral dip fragments in the final configuration.

We also calculated the Hamiltonian

H5E
0

`E
0

2p

rdrduS u¹uu21
1

2
I s

3 I s12uuu2

I s1uuu2 D ~8!

for the RADS-vortex configuration, in order to estimate t
sign of the corresponding interaction@cf. Eq. ~7!#. The result
is that, unlike the effective potential shown in Fig. 6, t

FIG. 6. The interaction potential~7! vs the radius of a RDS
located on top of the vortex. It is obvious that the RDS is attrac
by the vortex core. A similar picture occurs for other values oe
~here,e50.1).
06661
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potential generated by the Hamiltonian~8! is a monotoni-
cally decreasing function ofr 0; hence the vortex core tend
to repel the antidark ring.

III. SPIRAL DARK SOLITONS

The presence of spiral arms in many of the figures d
played above, as well as in Fig. 2 of Ref.@16#, suggests the
question whether stable spiral dark or antidark solitons m
exist. To address the issue, we generated initial conditi
that consisted of spiral arms emanating from the vortex c
on top of the uniform background; see the top left panel
Fig. 9. Such initial configurations were constructed by
placing r→r 1Su, with an integer ‘‘spin’’S, in the numeri-
cally found expression for the zero-vorticity RDS~so that the
net ‘‘spin’’ of the perturbation, taking into regard the vortic
ity of the underlying vortex, isS11). Then the configuration
was allowed to evolve, governed by the (211)-dimensional
NLS equation~1! with the defocusing Kerr nonlinearity. An
example of the evolution is displayed in Fig. 10.

The following persistent features were observed in all
numerical experiments with the spiral solitons: an instabi
appears at the core of the spiral, which enforces genera
of a dipolelike structure rotating around the center and em
ting waves outward~so that the structure resembles a spr
kler!. Upon collision with the domain boundaries, the em
ted waves give rise to interference patterns which can
clearly discerned in Fig. 10. It should be noted, however, t
these numerical experiments were performed for spiral d
solitons with different numbers of spiral arms and the ins
bility converting the core into a dipole was observedin all
the cases studied. It should also be mentioned, for the sim
lation of Fig. 10, that the phenomena occurring near the c

d

,

FIG. 7. Evolution of the abso-
lute value of the field in the case
of the interaction of a RADS with
the vortex in the subcritical case
with e50.1. The panels shown
pertain toz50, z52, z55, and
z59.
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FIG. 8. The same as in Fig. 7
but for the transcritical case, with
e50.6. The panels shown pertai
to z50, z54, z58, andz512.
ir

Fi

ag

core
n-
is
e-

. It
are well screened from the domain boundary by the sp
arms and hence werenot affected for the duration of the
numerical experiment ~in which the instability
developed—in fact, already at the second snapshot of
10! by the presence of the boundary.

Thus, it can be concluded that, although spiral arm fr
06661
al

g.

-

ments appear to propagate as stable configurations, the
instability of the spiral dark solitary wave transforms its ce
tral part into a wave-emitting dipole. The fact that a dipole
a more stable configuration is not surprising in view of r
cent results for focusing media@19#, where such patterns
were observed to be stable in a wide parametric range
f

r-
FIG. 9. The eccentric vortex
initially placed at the position
4:30 inside the RADS, in terms o
the clock rule. In this case,e
50.4, and the panels shown pe
tain to z50, z52, z54, and z
55.
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FIG. 10. The evolution of a
configuration that was constructe
on purpose as a spiral dark sol
ton. The top left panel shows th
initial configuration proper, and
the subsequent top right, bottom
left, and bottom right panels show
results inDz54 steps. It can be
seen that the outer portions of th
spiral move outward, creating in
terference patterns due to their in
teraction with the boundary. Si
multaneously, the core very
rapidly converts itself into a di-
pole rotating around its center
emitting additional waves out-
ward.
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should be noted, however, that in the latter case such
figurations were stationary~nonrotating!.

IV. CONCLUSION

In this work, interactions between dark and antidark a
nular solitary waves with a vortex were examined in t
framework of the (211)-dimensional NLS equation with
both Kerr and non-Kerr~saturable! defocusing nonlinearities
It was found that the interactions produce very different
sults, depending on the amplitude of the~anti!dark-soliton
component in the initial configuration. If the amplitude
smaller than a certain critical value, the ring soliton boun
from the vortex core with polarity reversal, without signifi
cantly affecting the vortex. On the other hand, if the amp
tude exceeds the critical value, the RDS and RADS are s
ject to an instability that breaks their isotropy and lends th
a spiral shape. In that case, the interaction with the RDS
RADS affects the vortex, changing its location, size, a
intrinsic structure. Evaluating the potential of the interacti
between the ring soliton and vortex, we have concluded
the interaction is attractive and repulsive for the dark a
antidark solitons, respectively. It was also shown that ecc
tricity in the initial position of the vortex’s core relative t
the ring soliton can give rise to an even richer interact
phenomenology including the possibility of fragmentation
the RADS and transformation of the original vortex into a
of spiral dips that inherit its vorticity.

The observation of spiral-shaped objects in many simu
tions reported in this work, as well as in previous wo
suggested a search for possible spiral dark solitons. A
result, we have found that, even though curved armlike st
06661
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tures can exist and propagate apparently stably in a s
defocusing Kerr medium, the core of the corresponding s
ral dark soliton is always subject to an instability th
transforms it into a rotating dipole sprinkling spiral waves
the outward direction.

The observation of strong localization events in so
cases~such as in the case of the interaction of a RADS w
an eccentric vortex! suggests the question of whether su
objects asantidark vorticesmay exist. Even though the an
swer was negative in the present case, the search for en
of this type in models with cubic-quintic or saturable nonli
earities may produce positive results.

Very recently, a paper@20# appeared that extends the fin
ings of Ref.@16# to the interaction of plane waves and no
linear stripe dark solitary waves with vortices. In Ref.@20#, it
was found~as we also confirmed and quantified herein
the interaction of the vortex with RDS’s and RADS’s! that
spiral arms develop as a result of the interaction, and that
vortex is displaced upon its interaction with the dark solita
wave@see Fig. 3~c! in Ref. @20##. In that work, the interaction
was interpreted as a classical~linear or nonlinear! version of
the Aharonov-Bohm effect.
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